另一项强化手段是纤维强化。在较软的基体中加入具有较高强度的金属纤维或碳素纤维,如加入钢纤维(拉拔状态的钢纤维抗拉强度可达4100MPa)后使材料强度和塑性大大提高。碳素纤维及其复合材料具有高比强度、高比模量、高耐热性和抗疲劳性能,但因成本高、制造工艺复杂,目前应用似仅限于航天航空等尖端领域。
3.4 对偶材料对摩擦性能影响的研究
和前三种研究相比,这方面的研究较薄弱。早年的资料表明,在干式应用中,灰口铸铁是****的对偶材质。在热负荷较大的工况下,该材料因其耐高温性能差而易生产龟裂,所以往往采用合金铸铁、铸钢或合金钢。在湿式工况中,对偶材料采用铸铁对摩擦系数没有多大的影响,主要是使用寿命不及钢对偶。
4 发展方向
现代科学技术和工业的迅速发展对摩擦材料提出了越来越高的要求,为了适应这种需要,机理研究和基础试验工作一直没有停顿过,对新型摩擦材料的研究也将是今后摩擦材料发展的重点,主要是发展性能优异、造价低廉的新型材料。
4.1 摩擦磨损理论与表面破坏机理的研究
摩擦与磨损是摩擦学研究的两个中心问题,学派甚多。当前较为广泛流行的摩擦理论是分子--机械理论。近年来,对摩擦过程中摩擦表面的破坏也颇有研究,证明磨损的产生是氧化、磨粒磨损、转化反应和层面疲劳的综合作用,只是在一定条件下,某一因素突出,成为主要磨损原因。
摩擦发生在两个接触表面,接触表面的“膜”的力学、理化性能,特别是其与基体材料的粘结强度等都决定着摩擦偶的摩擦磨损性能。80年代以来 ,对产生在摩擦表面的润滑膜和氧化膜作了更为深入的研究,取得了一些成果。特别是借助于现代测试手段来进一步探测表面层的组织与结构,观测其形成与破坏,系统地研究了表面破坏机理。摩擦接触面上同时产生的三种相互关联过程,即表面相互作用、固体表层和表面膜在摩擦力作用下的变化和表层破坏对摩擦副性能的影响、周围介质的性质和实际工作状态相互之间的作用和影响,所有这些细节,将会更进一步地深入研究下去。
4.2 新型摩擦材料的研究
一个值得注意的趋势是为了适应不同的工况,已研制和发展了一些新型摩擦材料,如纸基、半金属、碳基等摩擦材料。虽然这些材料不属于粉末冶金范畴,但是它们同属于摩擦材料领域。因为这些材料的制造设备、制造工艺、测试方法、设计依据、所用原材料等有相通和类似之处,所以已有越来越多的粉末冶金摩擦制品企业突破了现有的粉末冶金行业界线,逐步地向摩擦制品,即按大产品分类的格局发展。
4.2.1 发展用金属纤维强化的复合材料
用金属纤维强化,大大提高了基体的强度,改善了基体的导热性能,对阻止表面裂纹的扩展起到了很好的作用。这类材料是大有发展前途的。
用耐高温并且有高摩擦系数的金属陶瓷作复合相,或用难熔化合物粉末作复合相,两者均可满足一些特殊工况的应用。
4.2.2 发展半金属摩擦材料
半金属材料是由高碳铁粉、石墨、二硫化钼、无机纤维(石棉纤维等)及一定数量的热固性树脂,通过热压制成的。该材料摩擦系数高、耐磨性好,适合汽车使用,但由于其耐热性差,不能用于高负荷工况。
自1972年国际肿瘤医学院研究会确认石棉为致癌物质后,西方国家纷纷采取措施,对石棉树脂摩擦材料加以限制,规定了使用年限。据此,必须尽快找到新型的符合安全环保标准的高性能材料来取代石棉树脂和含石棉的半金属摩擦材料,于是研制出了以钢纤维、矿物纤维、玻璃纤维和有机纤维来代替石棉纤维。
80年代中期以后,世界汽车工业急速向高速、轻型化方向发展,制动系统相应不断改进和完善,针对前期推出的半金属型材料存在的诸如钢纤维容易锈蚀、易粘着或损伤对偶以及热传导率高引起粘结剂分解而使摩擦衬与钢背板出现分离等缺点加以改进。为此,美国BenDix公司投入1亿美元用于专项质量改进。欧洲的主要工业国家也在解决材料性能、生产工艺、制造成本等相关问题上投入了不少的资金。
4.2.3 发展铝基摩擦材料
铝基摩擦材料发展缓慢是有它的一些特殊原因的,但铝重量轻、耐腐蚀、不导磁、高导电导热性、比强度高,而且可以采用弥散强化手段来强化基体,所以其研发工作备受关注。
由雾化粉末快速固化铝合金发展出的新型高温、高强摩擦材料具有热稳定弥散相,比传统时效硬化材料更优越,可在350℃以上使用,通过al3Zr和al6Mn弥散相和晶粒细化还可进一步提高力学性能。所有这些特点,赋予铝基摩擦材料广阔的发展前景。alSi基高级铝合金摩擦材料已经问世。
作者:杭州粉末冶金研究所 鲁乃光
|