同时,铝合金对气孔有****的敏感性,而氢是铝及铝合金熔焊时产生气孔的主要原因。氢之所以能使焊缝形成气孔,与其在铝及铝合金中溶解度的变化特性有关。平衡条件下,氢在铝及铝合金中的溶解度在凝固点时可以从0.69ml/100g突降到0.036ml/100g,相差约20倍(在钢中只相差不到2倍),这是氢容易使焊缝产生气孔的重要原因之一。另外,铝的导热性很强,在同样的工艺条件下,铝熔合区的冷却速度可为钢的4~7倍,不利于气泡的逸出,更易于促使气孔形成。这些问题制约了激光焊接技术在航空航天及国防工业等领域的应用。
采用激光填丝焊接技术(LaserWeldingTechniquewithFillerWire)不仅可以保持激光焊固有的优点,还可以改善铝合金激光焊接的表面成形,提高接头的力学性能,防止裂纹产生,以较小的功率实现厚板的焊接等,从而大大扩展激光焊接的可能性与应用范围。因此,激光填丝焊接技术是激光焊接的发展与应用中必须解决的一项基本技术。
激光填丝焊接的工艺与“扫描”加工方式不同的是,聚焦激光斑点不是直接照射在工件表面,而是照射到焊丝上,焊丝金属熔化后再进入待焊两工件之间,为了保护加工区和控制光致等离子体,还需要向激光束和焊丝及工件作用部位吹送保护气体。为了实现单面焊双面成形,保证焊缝背面成形,还必须对其施加背保护。
研究铝合金薄板的激光填丝焊接性,为该技术在我国飞机制造和宇航服中的应用打下基础。同时,还可以解决型号研制中铝合金激光焊接不能填丝这一“瓶颈”问题,为工程化应用提供技术支持。
在对铝合金激光填丝焊接技术研究中,送丝直径最小为0.8mm,配合机器人实现自动化焊接。由于铝丝质软易卷曲,在送丝过程中易出现堆丝,因此送丝系统理想的驱动方式是推-拉丝方式,即在焊丝盘一端推,在焊接头一端拉。在推丝送丝方式的焊把上加装了微型电动机作为拉丝动力。焊丝前进时既靠后边的推力,又靠前边的拉力,利用二者的合力来克服焊丝软管中的阻力。一般来说,在推-拉丝式送丝方式中,推丝电动机是主要的送丝动力,它保证等速送进焊丝。拉丝电动机只起到随时将焊丝拉直的作用。在推拉式送丝方式中,两个动力要有一定的配合,尽量做到同步,但以推为主。在焊丝送进过程中,始终要保持焊丝在软管中处于拉直状态。这样就要求拉丝动力稍快于推丝动力,这两个动力之间要保持一定的速率比。
激光填丝焊成形控制
激光填丝焊接技术的关键是确定焊丝的送丝位置和送丝速度。送丝位置是指在焊接方向上相对于匙孔的位置偏差(Wx)以及沿激光束轴线横穿匙孔的位置偏差(Wz)。送丝方式分为前送丝和后送丝。前送丝是指与焊接方向相反,焊丝末端指向匙孔前边缘的送进方式;后送丝是指与焊接方向相同,焊丝末端指向匙孔后边缘的送进方式。一般认为,前送丝方式可以使填充材料在焊缝中的分布更加均匀。
|